论文标题
面部动作单位强度通过语义对应学习和动态图卷积估算
Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution
论文作者
论文摘要
由于人面部外观的细微变化,面部动作单元(AUS)的强度估计是具有挑战性的。先前的方法主要依赖于概率模型或预定义的规则来建模AUS之间的共发生关系,从而导致概括有限。相比之下,我们提出了一个新的学习框架,该框架可以通过在特征地图之间建立语义对应关系自动学习AUS的潜在关系。在基于热图回归的网络中,特征地图保留了与AU强度和位置相关的丰富语义信息。此外,可以通过激活一组特征通道来反映AU共发生的模式,其中每个通道都编码AU的特定视觉模式。这促使我们对特征通道之间的相关性进行建模,这隐含地代表了AU强度水平的共发生关系。具体而言,我们引入了语义对应卷积(SCC)模块,以动态计算深层和低分辨率特征图的对应关系,从而增强了特征的可区分性。实验结果证明了我们方法在两个基准数据集上的有效性和出色性能。
The intensity estimation of facial action units (AUs) is challenging due to subtle changes in the person's facial appearance. Previous approaches mainly rely on probabilistic models or predefined rules for modeling co-occurrence relationships among AUs, leading to limited generalization. In contrast, we present a new learning framework that automatically learns the latent relationships of AUs via establishing semantic correspondences between feature maps. In the heatmap regression-based network, feature maps preserve rich semantic information associated with AU intensities and locations. Moreover, the AU co-occurring pattern can be reflected by activating a set of feature channels, where each channel encodes a specific visual pattern of AU. This motivates us to model the correlation among feature channels, which implicitly represents the co-occurrence relationship of AU intensity levels. Specifically, we introduce a semantic correspondence convolution (SCC) module to dynamically compute the correspondences from deep and low resolution feature maps, and thus enhancing the discriminability of features. The experimental results demonstrate the effectiveness and the superior performance of our method on two benchmark datasets.