论文标题
不可能掩盖一组非零度量的量子状态
Impossibility of masking a set of quantum states of nonzero measure
论文作者
论文摘要
我们基于等距线性算子来研究量子信息掩模,该量级线性算子将纯状态中编码的信息分配到双方状态的相关性。结果表明,等距线性操作员无法掩盖任何纯状态的任何非零测量集。我们提出了可掩盖集的几何表征,并表明任何可掩盖的集合都必须位于某些欧几里得空间中的球形圆上。分析了详细的示例和潜在应用,例如秘密共享和量子密码学。
We study the quantum information masking based on isometric linear operators that distribute the information encoded in pure states to the correlations in bipartite states. It is shown that a isometric linear operator can not mask any nonzero measure set of pure states. We present a geometric characterization of the maskable sets, and show that any maskable set must be on a spherical circle in certain Euclidean spaces. Detailed examples and potential applications in such as secret sharing and quantum cryptography are analyzed.