论文标题

对合作预测的隐私保护方法的批判性概述

A Critical Overview of Privacy-Preserving Approaches for Collaborative Forecasting

论文作者

Gonçalves, Carla, Bessa, Ricardo J., Pinson, Pierre

论文摘要

不同数据所有者之间的合作可能会改善预测质量 - 例如,从地理分布时间序列中的时空依赖性中受益。由于业务竞争因素和个人数据保护问题,数据所有者可能不愿意共享他们的数据,这增加了对合作保护隐私的预测的兴趣。本文分析了最先进的方法,并揭示了现有方法在使用矢量自回旋(VAR)模型时保证数据隐私方面的几个缺点。本文还提供了数学证明和数值分析,以评估现有的隐私方法,将其分为三组:数据转换,安全的多方计算和分解方法。分析表明,最新的技术在保留数据隐私方面存在局限性,例如隐私和预测准确性之间的权衡,而迭代模型拟合过程中的原始数据(在其中共享中间结果)可以在某些迭代后推断出中间结果。

Cooperation between different data owners may lead to an improvement in forecast quality - for instance by benefiting from spatial-temporal dependencies in geographically distributed time series. Due to business competitive factors and personal data protection questions, said data owners might be unwilling to share their data, which increases the interest in collaborative privacy-preserving forecasting. This paper analyses the state-of-the-art and unveils several shortcomings of existing methods in guaranteeing data privacy when employing Vector Autoregressive (VAR) models. The paper also provides mathematical proofs and numerical analysis to evaluate existing privacy-preserving methods, dividing them into three groups: data transformation, secure multi-party computations, and decomposition methods. The analysis shows that state-of-the-art techniques have limitations in preserving data privacy, such as a trade-off between privacy and forecasting accuracy, while the original data in iterative model fitting processes, in which intermediate results are shared, can be inferred after some iterations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源