论文标题

人为合作网站选择

Human-Collective Collaborative Site Selection

论文作者

Cody, Jason R., Roundtree, Karina A., Adams, Julie A.

论文摘要

机器人集体是包括群体和殖民地特征的本地感应和交流机器人的大型群体(至少50个),其紧急行为完成了复杂的任务。未来的人类团队将扩大操作员在灾难响应,搜救和救援以及环境监测问题方面进行监控,响应和做出决定的能力。该手稿评估了两个集体最佳决策模型,以使集体能够从有限的N目标集中识别并选择最高价值的目标。两个挑战阻碍了人类共享的共同决策的未来使用:1)环境偏见在比更高质量目标更容易评估目标时降低了集体决策准确性,而2)关于共享的人为制定决策互动策略,几乎没有什么理解的。这两个评估的集体最佳N模型包括现有的昆虫菌落决策模型和扩展的减少偏置模型,该模型试图减少环境偏见以提高准确性。使用这两种策略的集体将独立比较,并作为人类团队的成员。独立地,扩展模型比原始模型要慢,但是在最佳选项更难评估的决策中,扩展算法的准确性要高57%。与使用原始模型的人类美感团队相比,使用减少偏置模型的人类团队需要更少的运营商影响力,并且在艰难的决策中实现了25%的精度。此外,一种新颖的人类互动策略使操作员能够在做出多个同时决策的同时调整集体自主权。

Robotic collectives are large groups (at least 50) of locally sensing and communicating robots that encompass characteristics of swarms and colonies, whose emergent behaviors accomplish complex tasks. Future human-collective teams will extend the ability of operators to monitor, respond, and make decisions in disaster response, search and rescue, and environmental monitoring problems. This manuscript evaluates two collective best-of-n decision models for enabling collectives to identify and choose the highest valued target from a finite set of n targets. Two challenges impede the future use of human-collective shared decisions: 1) environmental bias reduces collective decision accuracy when poorer targets are easier to evaluate than higher quality targets, and 2) little is understood about shared human-collective decision making interaction strategies. The two evaluated collective best-of-n models include an existing insect colony decision model and an extended bias-reducing model that attempts to reduce environmental bias in order to improve accuracy. Collectives using these two strategies are compared independently and as members of human-collective teams. Independently, the extended model is slower than the original model, but the extended algorithm is 57% more accurate in decisions where the optimal option is more difficult to evaluate. Human-collective teams using the bias-reducing model require less operator influence and achieve 25% higher accuracy with difficult decisions, than the human-collective teams using the original model. Further, a novel human-collective interaction strategy enables operators to adjust collective autonomy while making multiple simultaneous decisions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源