论文标题
电力系统安全规则提取和嵌入的稀疏倾斜决策树
Sparse Oblique Decision Tree for Power System Security Rules Extraction and Embedding
论文作者
论文摘要
增加可变生成的渗透对电力系统的运行可靠性有重大影响。源于这种变异性的较高的不确定性水平使确定给定的操作条件是否安全或不安全变得更加困难。数据驱动的技术提供了一种有希望的方法来识别可以嵌入经济调度模型中的安全规则,以确保电源系统运行状态安全。本文建议使用稀疏的加权倾斜决策树来学习线性的准确,易于理解和可嵌入的安全规则,可以使用递归算法将其作为稀疏矩阵提取。然后,可以使用Big-M方法将这些矩阵轻松嵌入为电源系统经济调度计算中的安全限制。在几个具有高可再生能量渗透的大型数据集上的测试证明了该方法的有效性。特别是,稀疏的加权斜决策树的表现优于最先进的加权决策树,同时保持安全规则简单。当嵌入经济调度中时,这些规则会大大增加安全状态的百分比并减少平均解决方案时间。
Increasing the penetration of variable generation has a substantial effect on the operational reliability of power systems. The higher level of uncertainty that stems from this variability makes it more difficult to determine whether a given operating condition will be secure or insecure. Data-driven techniques provide a promising way to identify security rules that can be embedded in economic dispatch model to keep power system operating states secure. This paper proposes using a sparse weighted oblique decision tree to learn accurate, understandable, and embeddable security rules that are linear and can be extracted as sparse matrices using a recursive algorithm. These matrices can then be easily embedded as security constraints in power system economic dispatch calculations using the Big-M method. Tests on several large datasets with high renewable energy penetration demonstrate the effectiveness of the proposed method. In particular, the sparse weighted oblique decision tree outperforms the state-of-art weighted oblique decision tree while keeping the security rules simple. When embedded in the economic dispatch, these rules significantly increase the percentage of secure states and reduce the average solution time.