论文标题

与$ t <n/3 $和$ o(n^2)$消息和$ o(1)$ round预期终止的异步二进制拜占庭共识算法的实验评估

Experimental Evaluation of Asynchronous Binary Byzantine Consensus Algorithms with $t < n/3$ and $O(n^2)$ Messages and $O(1)$ Round Expected Termination

论文作者

Crain, Tyler

论文摘要

这项工作对各种构型进行了四种异步二进制拜占庭共识算法[11,16,18]进行实验评估。除了异步,这些算法在回合中运行,可忍受多达三分之一的故障节点,使用$ o(n^2)$消息,并使用随机的普通硬币在预期的恒定次数中终止。四种算法中的每一个对随机硬币的要求都不同,对于每回合所需的消息数,是否需要加密标志,除其他细节外。测试了两种不同的非交互式阈值公共硬币实现,一种使用阈值签名,一种基于使用有效性证明的Diffe-Hellman问题[11]。 实验在单个数据中心和地理分布的配置中运行,介于$ 4 $至48美元之间。测试了各种简单的错误行为。由于没有算法在所有实验条件下都表现最佳,因此引入了两种新算法,这些算法仅将现有算法的属性与在大多数实验环境中具有良好性能相结合。

This work performs an experimental evaluation of four asynchronous binary Byzantine consensus algorithms [11,16,18] in various configurations. In addition to being asynchronous these algorithms run in rounds, tolerate up to one third of faulty nodes, use $O(n^2)$ messages, and use randomized common coins to terminate in an expected constant number of rounds. Each of the four algorithms have different requirements for the random coin, for the number of messages needed per round, whether or not cryptographic signatures are needed, among other details. Two different non-interactive threshold common coin implementations are tested, one using threshold signatures, and one based on the Diffe-Hellman problem using validity proofs [11]. Experiments are run in single data center and geo-distributed configurations with between $4$ and $48$ nodes. Various simple faulty behaviors are tested. As no algorithm performs best in all experimental conditions, two new algorithms introduced that simply combine properties of the existing algorithms with the goal of having good performance in the majority of experimental settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源