论文标题

使用不同的预处理方法的深度学习对颜色眼底图像中微型尿布的自动检测

Automated Detection of Microaneurysms in Color Fundus Images using Deep Learning with Different Preprocessing Approaches

论文作者

Tavakoli, Meysam, Jazani, Sina, Nazar, Mahdieh

论文摘要

通过使用计算机技术的成像方法随时为医生提供帮助并减轻其工作量,尤其是在迭代过程中,例如识别感兴趣的对象,例如病变和图像中的解剖结构。在某些视网膜图像分析算法中,以视网膜中的病变为重要的一步,以鉴定糖尿病性视网膜病变(DR)为发达国家的第二大眼部疾病,被认为是视网膜中的病变之一。这项研究的目的是比较两种预处理方法,照明均衡和顶级帽子转化对视网膜图像的影响,以使用基于匹配的方法和在正常的底面图像中或在DR的存在下使用基于匹配的方法和深度学习方法的组合来检测MAS。检测的步骤如下:1)应用预处理,2)船舶分割和掩盖,以及3)MAS检测基于匹配的方法和深度学习的组合。从准确的角度来看,我们将方法与眼科医生为我们的大型视网膜图像数据库(超过2200张图像)进行的手动检测进行了比较。使用第一个预处理方法,照明均衡和对比度增强,所有数据库(一个局部和两个公共视网膜数据库)的MAS检测准确性约为90%。对于所有数据库,使用顶级预处理(第二种预处理方法)的MAS检测方法的性能均超过80%。

Imaging methods by using computer techniques provide doctors assistance at any time and relieve their workload, especially for iterative processes like identifying objects of interest such as lesions and anatomical structures from the image. Detection of microaneurysms (MAs) as one of the lesions in the retina is considered to be a crucial step in some retinal image analysis algorithms for the identification of diabetic retinopathy (DR) as the second-largest eye diseases in developed countries. The objective of this study is to compare the effect of two preprocessing methods, Illumination Equalization, and Top-hat transformation, on retinal images to detect MAs using a combination of Matching based approach and deep learning methods either in the normal fundus images or in the presence of DR. The steps for the detection are as following: 1) applying preprocessing, 2) vessel segmentation and masking, and 3) MAs detection using a combination of Matching based approach and deep learning. From the accuracy viewpoint, we compared the method to manual detection performed by ophthalmologists for our big retinal image databases (more than 2200 images). Using first preprocessing method, Illumination equalization and contrast enhancement, the accuracy of MAs detection was about 90% for all databases (one local and two publicly retinal databases). The performance of the MAs detection methods using top-hat preprocessing (the second preprocessing method) was more than 80% for all databases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源