论文标题
量化空间分辨率和噪声对星系金属性梯度的影响
Quantifying the effects of spatial resolution and noise on galaxy metallicity gradients
论文作者
论文摘要
金属性梯度是星系进化的重要诊断,因为它们记录了合并,气体流入和恒星形成等事件的历史。但是,可以测量梯度的准确性受到空间分辨率和噪声的限制,因此需要校正该效果的测量值。我们使用面对面的银河系的高分辨率(〜20 pc)模拟,再加上光电子化模型,以生成一套合成的高分辨率积分磁场光谱(IFS)数据库。然后,我们使用一系列用于空间分辨率的现实模型(每个星系尺度长度2至16个光束)和噪声来降低数据存储,以调查和量化输入金属性梯度如何作为分辨率和信噪比(SNR)(SNR)的函数恢复,并与现代IFS Surveys相比,与Modern Ifs Surveys相比。考虑到不确定性的适当传播和低SNR像素的修剪,我们表明每个星系尺度长度的3-4望远镜梁的分辨率足以使梯度恢复到〜10-20%的不确定性。对于较低的分辨率,不确定性升至约60%。纳入低SNR像素会导致推断梯度的不确定性恶化。我们的结果可能会导致未来的IF SORVEYS有关获得金属梯度测量准确性所需的分辨率和SNR的调查。
Metallicity gradients are important diagnostics of galaxy evolution, because they record the history of events such as mergers, gas inflow and star-formation. However, the accuracy with which gradients can be measured is limited by spatial resolution and noise, and hence measurements need to be corrected for such effects. We use high resolution (~20 pc) simulation of a face-on Milky Way mass galaxy, coupled with photoionisation models, to produce a suite of synthetic high resolution integral field spectroscopy (IFS) datacubes. We then degrade the datacubes, with a range of realistic models for spatial resolution (2 to 16 beams per galaxy scale length) and noise, to investigate and quantify how well the input metallicity gradient can be recovered as a function of resolution and signal-to-noise ratio (SNR) with the intention to compare with modern IFS surveys like MaNGA and SAMI. Given appropriate propagation of uncertainties and pruning of low SNR pixels, we show that a resolution of 3-4 telescope beams per galaxy scale length is sufficient to recover the gradient to ~10-20% uncertainty. The uncertainty escalates to ~60% for lower resolution. Inclusion of the low SNR pixels causes the uncertainty in the inferred gradient to deteriorate. Our results can potentially inform future IFS surveys regarding the resolution and SNR required to achieve a desired accuracy in metallicity gradient measurements.