论文标题

IRO的设计控制的合成$ _2 $ au nandendrites上的子单层:嫁给等离子和电催化特性

Design-controlled Synthesis of IrO$_2$ sub-monolayers on Au Nanodendrites: Marrying Plasmonic and Electrocatalytic Properties

论文作者

de Freitas, Isabel C., Parreira, Luanna S., Barbosa, Eduardo C. M., Novaes, Barbara A., Mou, Tong, Alves, Tiago. V., Quiroz, Jhon, Wang, Yi-Chi, Slater, Thomas J, Thomas, Andrew, Wang, Bin, Haigh, Sarah J, Camargoa, Pedro H. C.

论文摘要

我们在这里开发了等离激元催化的Au-iro $ _2 $纳米结构,其形态优化了用于有效的光收集和催化表面积;纳米颗粒具有树突状形态,其间距紧密的AU分支都被超薄(1 nm)IRO $ _2 $ shell所部分覆盖。由于形成电磁热点的紧密间隔等离子分支的相互作用以及超薄的IRO $ _2 $ layer层的相互作用,这种纳米颗粒体系结构优化了光学特征。将该概念评估为增强对氧演化反应(OER)的电催化性能作为模型转化。 OER可以在满足未来的能源需求中发挥核心作用,但是在这种反应中传统电催化剂的性能受到慢性动力学的限制。我们通过从多金属纳米颗粒中的可见光照明中收集等离子体效应,证明了最活跃的OER催化剂之一IRO $ _2 $的OER性能。我们发现,在LSPR激发下,可以改善Au-iro $ _2 $ nanodendrites的OER活动,与文献中报道的最佳属性相匹配。我们的模拟和电催化数据表明,OER活性的增强可以归因于AU和IRO $ _2 $之间的电子相互作用,以及通过LSPR激发的热孔激活IR-O键,导致在可见光光照射下的反应机理(速率确定步骤)的变化。

We develop herein plasmonic-catalytic Au-IrO$_2$ nanostructures with a morphology optimized for efficient light harvesting and catalytic surface area; the nanoparticles have a dendritic morphology, with closely spaced Au branches all partially covered by an ultrathin (1 nm) IrO$_2$ shell. This nanoparticle architecture optimizes optical features due to the interactions of closely spaced plasmonic branches forming electromagnetic hot spots, and the ultra-thin IrO$_2$ layer maximizes efficient use of this expensive catalyst. This concept was evaluated towards the enhancement of the electrocatalytic performances towards the oxygen evolution reaction (OER) as a model transformation. The OER can play a central role in meeting future energy demands but the performance of conventional electrocatalysts in this reaction is limited by the sluggish OER kinetics. We demonstrate an improvement of the OER performance for one of the most active OER catalysts, IrO$_2$, by harvesting plasmonic effects from visible light illumination in multimetallic nanoparticles. We find that the OER activity for the Au-IrO$_2$ nanodendrites can be improved under LSPR excitation, matching best properties reported in the literature. Our simulations and electrocatalytic data demonstrate that the enhancement in OER activities can be attributed to an electronic interaction between Au and IrO$_2$ and to the activation of Ir-O bonds by LSPR excited hot holes, leading to a change in the reaction mechanism (rate-determinant step) under visible light illumination.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源