论文标题
尖锐的尾巴路线图
Tail-behavior roadmap for sharp restart
论文作者
论文摘要
许多任务是通过随机过程完成的。此类任务的完成时间可能会受到重新启动的深刻影响:偶尔重置任务的基础随机过程。因此,确定重新启动何时会阻碍或加快任务完成是一个重要的主题。近年来,研究人员广泛探索了这一主题,主要重点将平均行为(即平均完成时间)设定为。一方面,平均方法主张“尖锐重新启动”的中心性 - 用确定性(固定)计时器重置。另一方面,平均方法的一个重大缺点是,它没有关于尾巴行为的见解,即极端完成时间的可能性。解决尖锐的重新启动,并将重点从均值转移到极端,对完成时间进行了全面的尾巴行为分析。该分析采用了危险率的可靠性工程概念,产生了一组普遍的结果,这些结果从尾巴行为的角度来确定了夏普重新启动会阻碍或加快任务完成时。普遍的结果是根据明确且高度适用的危害率标准制定的。有了新的结果,设计了一份通用的平均 - & - 尾巴分类手册,用于尖锐的重新启动。该手册指定了一般方案,其中 - 相当违反直觉 - 尖锐的重新启动对平均行为和尾部行为具有相反的影响:减少平均完成时间,同时大大增加了极端完成时间的可能性;而且,相反,增加平均完成时间,同时大大减少了极端完成时间的可能性。
Many tasks are accomplished via random processes. The completion time of such a task can be profoundly affected by restart: the occasional resetting of the task's underlying random process. Consequently, determining when restart will impede or expedite task completion is a subject of major importance. In recent years researchers explored this subject extensively, with main focus set on average behavior, i.e. on mean completion times. On the one hand, the mean approach asserts the centrality of "sharp restart" -- resetting with deterministic (fixed) timers. On the other hand, a significant drawback of the mean approach is that it provides no insight regarding tail behavior, i.e. the occurrence likelihood of extreme completion times. Addressing sharp restart, and shifting the focus from means to extremes, this paper establishes a comprehensive tail-behavior analysis of completion times. Employing the reliability-engineering notion of hazard rate, the analysis yields a set of universal results that determine -- from a tail-behavior perspective -- when sharp restart will impede or expedite task completion. The universal results are formulated in terms of explicit and highly applicable hazard-rate criteria. With the novel results at hand, a universal average-&-tail classification manual for sharp restart is devised. The manual specifies general scenarios in which -- rather counter-intuitively -- sharp restart has an opposite effect on average behavior and on tail behavior: decreasing mean completion times while dramatically increasing the likelihood of extreme completion times; and, conversely, increasing mean completion times while dramatically decreasing the likelihood of extreme completion times.