论文标题

存在通用非线性多层流体结构相互作用问题的弱解决方案与Navier-Slip边界条件

Existence of weak solutions to a generalized nonlinear multi-layered fluid-structure interaction problem with the Navier-slip boundary conditions

论文作者

Liu, Wenjun, Liu, Yadong, Yu, Jun

论文摘要

我们考虑了带有纳维尔滑移边界条件的流体结构相互作用问题,其中流体被视为非牛顿流体,该结构由非线性多层模型描述。流体结构域由非线性弹性壳驱动,因此未固定。为了简化问题,我们通过应用任意的Lagrange Euler映射将移动流体域映射到固定域中。与我们可以将问题视为完整问题的经典方法不同,我们利用时间限制并将问题分为流体子问题,并通过操作员分开方案将问题分为流体子问题和结构子问题。由于结构子问题是非线性的,因此lax-milgram引理无法保持。在这里,我们通过传统的半群理论证明存在和独特性。注意到非牛顿液具有$ p-$ laplacian结构,我们通过考虑浏览薄荷定理来展示流体子问题的溶液的存在和独特性。通过均匀的能量估计,我们分别推断出弱和弱收敛。由Muha andCanić提出的广泛的Aubin-Lions-Simon引理[J.微分方程{\ bf 266}(2019),8370--8418],我们获得了强收敛。最后,我们构建测试函数,并将近似弱公式传递到限制,而随着时间步长的收敛结果为零。

We consider a fluid-structure interaction problem with Navier-slip boundary conditions in which the fluid is considered as a non-Newtonian fluid and the structure is described by a nonlinear multi-layered model. The fluid domain is driven by a nonlinear elastic shell and thus is not fixed. To simplify the problem, we map the moving fluid domain into a fixed domain by applying an arbitrary Lagrange Euler mapping. Unlike the classical method by which we can consider the problem as its entirety, we utilize the time-discretization and split the problem into a fluid subproblem and a structure subproblem by an operator splitting scheme. Since the structure subproblem is nonlinear, Lax-Milgram lemma does not hold. Here we prove the existence and uniqueness by means of the traditional semigroup theory. Noticing that the Non-Newtonian fluid possesses a $ p- $Laplacian structure, we show the existence and uniqueness of solutions to the fluid subproblem by considering the Browder-Minty theorem. With the uniform energy estimates, we deduce the weak and weak* convergence respectively. By a generalized Aubin-Lions-Simon Lemma proposed by Muha and Canić [J. Differential Equations {\bf 266} (2019), 8370--8418], we obtain the strong convergence. Finally, we construct the test functions and pass the approximate weak formulation to the limit as time step goes to zero with the convergence results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源