论文标题
通过凸双重关系的一类不连续问题的不连续的Galerkin方法的错误估计
Error estimates for a class of discontinuous Galerkin methods for nonsmooth problems via convex duality relations
论文作者
论文摘要
我们为非线性和非平滑变异问题设计和分析一类内部惩罚不连续的盖尔金方法。得出离散的偶性关系,在总变化的正规化最小化或障碍问题的情况下导致最佳误差估计。分析提供了精确确定稳定参数作用的明确估计。数值实验指示估计值的最佳性。
We devise and analyze a class of interior penalty discontinuous Galerkin methods for nonlinear and nonsmooth variational problems. Discrete duality relations are derived that lead to optimal error estimates in the case of total-variation regularized minimization or obstacle problems. The analysis provides explicit estimates that precisely determine the role of stabilization parameters. Numerical experiments suppport the optimality of the estimates.