论文标题

用超导电路测量和控制射频量子

Measuring and controlling radio-frequency quanta with superconducting circuits

论文作者

Gely, Mario Florentin

论文摘要

在本博士学位论文中,我们将介绍导致射频电路量子电动力学系统(RFCQED)实现的理论和实验工作。在第2章中,我们提供了在Rabi模型背景下提出的电路QED的详细推导,并为跨Kerr相互作用提取表达式。讨论了RFCQED中耦合速率的最终要求,其中之一是与典型的QED设备相比,需要显着提高耦合率。在第3章中,我们介绍了增加电路QED系统中耦合的两种实验方法,一种利用高阻抗谐振器,第二种利用大型耦合电容器。在第4章中,我们结合了实施RFCQED的这两种方法。通过强烈的色散耦合,我们可以测量Megahertz谐振器中的单个光子,通过将谐振器冷却到基态或准备Fock状态来证明量子控制,并最终通过纳秒分辨率观察到这些状态的重新加工。在第5章中,我们介绍了Python中的Qucat或Quantum电路分析仪工具,该软件包可用于设计电路QED系统,例如本文中介绍的系统。在第6章中,我们讨论了如何使用我们当前的物理定律来描述一般相对论和量子力学之间的某些相互作用。特别是,我们展示了射频机械振荡器如何在此制度中进行实验的理想候选者。在第7章中,我们介绍了将这种机械振荡器耦合到微弱的静脉超导电路(例如Transmon Qubit或RFCQED系统)的前景。

In this PhD thesis, we will present the theoretical and experimental work that led to the realization of a radio-frequency circuit quantum electrodynamics system (RFcQED). In chapter 2, we provide a detailed derivation of the Hamiltonian of circuit QED formulated in the context of the Rabi model, and extract expressions for the cross-Kerr interaction. The resulting requirements for the coupling rate in RFcQED are discussed, one of them being the need to dramatically increase the coupling rate compared to typical circuit QED device. In chapter 3 we cover two experimental approaches to increasing the coupling in a circuit QED system, one making use of a high impedance resonator, the second utilizing a large coupling capacitor. In chapter 4, we combine these two approaches to implement RFcQED. Through strong dispersive coupling, we could measure individual photons in a megahertz resonator, demonstrate quantum control by cooling the resonator to the ground state or preparing Fock states, and finally observe with nanosecond resolution the re-thermalization of these states. In chapter 5 we present QuCAT or Quantum Circuit Analyzer Tool in Python, a software package that can be used for the design of circuit QED systems such as the one presented in this thesis. In chapter 6 we discuss how certain interplays between general relativity and quantum mechanics cannot be described using our current laws of physics. In particular, we show how radio-frequency mechanical oscillators are perfect candidates to perform experiments in this regime. In chapter 7 we present the prospects for coupling such mechanical oscillator to weakly anharmonic superconducting circuits such as the transmon qubit or RFcQED systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源