论文标题
基于机器学习的工业环境中检测异常的三层方法
Three-layer Approach to Detect Anomalies in Industrial Environments based on Machine Learning
论文作者
论文摘要
本文介绍了一种设计量身定制解决方案的一般方法,以根据物联网(IoT)网络和机器学习算法在不同工业应用中检测罕见事件。我们提出了一个基于三层(物理,数据和决策)的一般框架,该框架定义了可能的设计选项,以便可以超级检测到罕见的事件/异常。然后将该一般框架应用于著名的基准场景,即田纳西·伊士曼(Tennessee Eastman)的过程。然后,我们在与数据过程有关的三个线程下分析了该基准:获取,融合和分析。我们的数值结果表明:(i)事件驱动的数据采集可以显着减少样品的数量,同时过滤测量噪声,(ii)相互信息数据融合方法可以显着降低可变空间,并且(iii)数据分析的定量关联规则挖掘方法对于罕见的事件检测,识别,识别和诊断和诊断是有效的。这些结果表明了综合解决方案的好处,该解决方案在拟议的一般三层框架上共同考虑了不同级别的数据处理,包括要使用的通信网络和计算平台的详细信息。
This paper introduces a general approach to design a tailored solution to detect rare events in different industrial applications based on Internet of Things (IoT) networks and machine learning algorithms. We propose a general framework based on three layers (physical, data and decision) that defines the possible designing options so that the rare events/anomalies can be detected ultra-reliably. This general framework is then applied in a well-known benchmark scenario, namely Tennessee Eastman Process. We then analyze this benchmark under three threads related to data processes: acquisition, fusion and analytics. Our numerical results indicate that: (i) event-driven data acquisition can significantly decrease the number of samples while filtering measurement noise, (ii) mutual information data fusion method can significantly decrease the variable spaces and (iii) quantitative association rule mining method for data analytics is effective for the rare event detection, identification and diagnosis. These results indicates the benefits of an integrated solution that jointly considers the different levels of data processing following the proposed general three layer framework, including details of the communication network and computing platform to be employed.