论文标题

广义弗里德里奇模型的特征值的收敛膨胀,具有排名一的扰动

Convergent expansions of eigenvalues of the generalized Friedrichs model with a rank-one perturbation

论文作者

Lakaev, Saidakhmat, Kurbanov, Shakhzod

论文摘要

我们研究了广义弗里德里奇型$h_μ(p)$的特征值的存在,具有排名一驱动的扰动,具体取决于参数$μ> 0 $> 0 $> 0 $和$ p \ in \ mathbb {t}^2 $,并在$μ(p)$(p)$(p)coupl coupl con con thresh the o eigenvalues in eigenvalues in the eigenvalues in of eigenvalues nose扩展高度依赖于此,无论基本频谱的阈值$ m(p)$是:$(i)$既不是阈值特征值还是阈值共鸣; $(ii)$ a阈值共振; $(iii)$一个特征值。

We study the existence of eigenvalues of the generalized Friedrichs model $H_μ(p)$, with a rank-one perturbation, depending on parameters $μ>0$ and $p\in\mathbb{T}^2$, and found an absolutely convergent expansions for eigenvalues at $μ(p)$, the coupling constant threshold. The expansions are highly dependent on that, whether the threshold $m(p)$ of the essential spectrum is: $(i)$ neither an threshold eigenvalue nor a threshold resonance; $(ii)$ a threshold resonance; $(iii)$ an threshold eigenvalue.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源