论文标题

当残留学习达到密集聚集时:重新思考深神经网络的聚集

When Residual Learning Meets Dense Aggregation: Rethinking the Aggregation of Deep Neural Networks

论文作者

Zhu, Zhiyu, Bian, Zhen-Peng, Hou, Junhui, Wang, Yi, Chau, Lap-Pui

论文摘要

已经提出了各种体系结构(例如Googlenets,Resnets和Densenets)。但是,现有网络通常会遭受卷积层的冗余或参数利用的不足。为了处理这些具有挑战性的问题,我们提出了微型网络,这是一种具有全球剩余学习和本地微密集聚集的新型架构。具体而言,剩余的学习旨在有效地从不同的卷积块中检索特征,而微型聚合能够通过减少残留聚合来增强每个块并避免卷积层的冗余。此外,所提出的微密度架构具有两个特征:锥体多层次特征学习,可以逐步扩大块中的深层层,并逐步基数适应性卷积,可以使用线性增加维度的心脏来平衡每个层。在三个数据集(即CIFAR-10,CIFAR-100和IMAGENET-1K)上的实验结果表明,只有400万参数的提议的微密度净净可以比最新的网络获得更高的分类精度,而较小的$ \ tims $ \ tims $ himes $较小的$较小的取决于参数的数量。此外,我们的微观块可以与基于神经体系结构搜索的模型集成,以提高其性能,从而验证我们的体系结构的优势。我们认为,我们的设计和发现将对DNN社区有益。

Various architectures (such as GoogLeNets, ResNets, and DenseNets) have been proposed. However, the existing networks usually suffer from either redundancy of convolutional layers or insufficient utilization of parameters. To handle these challenging issues, we propose Micro-Dense Nets, a novel architecture with global residual learning and local micro-dense aggregations. Specifically, residual learning aims to efficiently retrieve features from different convolutional blocks, while the micro-dense aggregation is able to enhance each block and avoid redundancy of convolutional layers by lessening residual aggregations. Moreover, the proposed micro-dense architecture has two characteristics: pyramidal multi-level feature learning which can widen the deeper layer in a block progressively, and dimension cardinality adaptive convolution which can balance each layer using linearly increasing dimension cardinality. The experimental results over three datasets (i.e., CIFAR-10, CIFAR-100, and ImageNet-1K) demonstrate that the proposed Micro-Dense Net with only 4M parameters can achieve higher classification accuracy than state-of-the-art networks, while being 12.1$\times$ smaller depends on the number of parameters. In addition, our micro-dense block can be integrated with neural architecture search based models to boost their performance, validating the advantage of our architecture. We believe our design and findings will be beneficial to the DNN community.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源