论文标题

UNET 3+:全面连接的UNET用于医疗图像细分

UNet 3+: A Full-Scale Connected UNet for Medical Image Segmentation

论文作者

Huang, Huimin, Lin, Lanfen, Tong, Ruofeng, Hu, Hongjie, Zhang, Qiaowei, Iwamoto, Yutaro, Han, Xianhua, Chen, Yen-Wei, Wu, Jian

论文摘要

最近,在基于深度学习的语义细分中越来越感兴趣。 UNET是具有编码器架构的深度学习网络之一,被广泛用于医学图像分割。组合多尺度特征是准确分割的重要因素之一。 UNET ++是通过设计带有嵌套和密集的跳过连接的建筑,作为修改后的UNET开发。但是,它没有从全尺度探索足够的信息,并且仍然有一个很大的改进空间。在本文中,我们提出了一种新颖的UNET 3+,它利用了全面的跳过连接和深入的监督。全尺度跳过连接将低级细节与不同尺度的特征地图的高级语义结合在一起;深度监督从全尺寸的汇总特征图中学习层次结构表示。提出的方法特别受益于出现在不同尺度的器官。除了准确性的改进外,提出的UNET 3+还可以降低网络参数以提高计算效率。我们进一步提出了混合损失函数,并设计了一个分类引导的模块,以增强器官边界并减少非器官图像中的过度分段,从而产生更准确的分割结果。在两个数据集上证明了所提出的方法的有效性。该代码可在以下网址找到:github.com/zjugivelab/unet-version

Recently, a growing interest has been seen in deep learning-based semantic segmentation. UNet, which is one of deep learning networks with an encoder-decoder architecture, is widely used in medical image segmentation. Combining multi-scale features is one of important factors for accurate segmentation. UNet++ was developed as a modified Unet by designing an architecture with nested and dense skip connections. However, it does not explore sufficient information from full scales and there is still a large room for improvement. In this paper, we propose a novel UNet 3+, which takes advantage of full-scale skip connections and deep supervisions. The full-scale skip connections incorporate low-level details with high-level semantics from feature maps in different scales; while the deep supervision learns hierarchical representations from the full-scale aggregated feature maps. The proposed method is especially benefiting for organs that appear at varying scales. In addition to accuracy improvements, the proposed UNet 3+ can reduce the network parameters to improve the computation efficiency. We further propose a hybrid loss function and devise a classification-guided module to enhance the organ boundary and reduce the over-segmentation in a non-organ image, yielding more accurate segmentation results. The effectiveness of the proposed method is demonstrated on two datasets. The code is available at: github.com/ZJUGiveLab/UNet-Version

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源