论文标题
低属的K3表面上有理曲线的单轨道
Monodromy of rational curves on K3 surfaces of low genus
论文作者
论文摘要
在许多情况下,列举问题的单型组将是完整的对称组。在本文中,我们研究了$ | \ Mathcal {o}(1)| $在$ \ Mathbb {C} $上的通用K3表面上的合理曲线的类似现象。我们证明,当K3表面带有$ g $,$ 1 \ leq g \ leq 3 $时,单片组是完整的对称组。
In many situations, the monodromy group of enumerative problems will be the full symmetric group. In this paper, we study a similar phenomenon on the rational curves in $|\mathcal{O}(1)|$ on a generic K3 surface of fixed genus over $\mathbb{C}$ as the K3 surface varies. We prove that when the K3 surface has genus $g$, $1\leq g\leq 3$, the monodromy group is the full symmetric group.