论文标题
在非共同的复合空间中,相对论的兰道和振荡器水平
Relativistic Landau and oscillator levels in a symmetric gauge field in a non-commutative complex space
论文作者
论文摘要
在这项工作中,我们使用创建和歼灭算子的代数技术,在非共同的复杂空间中的复杂对称仪表场中获得了相对论兰道问题的精确解决方案。结果表明,在不合同的复杂空间中,复杂的对称量规场中的相对论兰道问题与保利期普通空间中的对称量规场的存在相似。我们得出了确切的非交通式兰道和振荡器能级,而获得了能量谱的非相关限制。我们表明能量不是退化的,并将其分为两个级别,如Zeeman效应。
In this work we obtain the exact solution for relativistic Landau problem plus oscillator potential in a complex symmetric gauge field in a non-commutative complex space, using the algebraic techniques of creation and annihilation operators. It is shown that the relativistic Landau problem in a complex symmetric gauge field in a non-commutative complex space is similar behavior to the Pauli equation in the presence of a symmetric gauge field in a commutative ordinary space. We derive the exact non-commutative Landau and oscillator energy levels, while the non-relativistic limit of the energy spectrum is obtained. We show that the energy is not degenerate and is splitted into two levels, as in the Zeeman effect.