论文标题
通过蒙特卡洛密度峰聚类在异质脑组织中通过蒙特卡洛密度聚类来解决方向特异性扩散特征
Resolving orientation-specific diffusion-relaxation features via Monte-Carlo density-peak clustering in heterogeneous brain tissue
论文作者
论文摘要
表征亚素纤维种群的特性和方向,尽管对于研究白色 - 摩擦体系结构,微观结构和连通性至关重要,但仍然是MRI微观结构社区所面临的主要挑战之一。尽管使用模型,信号表示和拖拉学算法克服这一挑战,但这些方法最终受到其关键假设的限制,或者仅仅由于扩散信号的特异性而受到限制。为了减轻这些局限性,我们结合了融合了张量 - 值扩散编码的扩散扩散的MR采集,蒙特卡罗信号反演,这些信号反演提取非参数扩散量张量的非参数内体内分布,并放宽率和密度基于密度的聚类群集技术。这种新方法称为“蒙特卡洛密度峰簇”(MC-DPC),首先描绘了群集在蒙特 - 卡洛信号倒置输出的类似纤维的扩散 - 浮肿组件的扩散定向子空间中,然后从这些逆向数字的统计范围中构成这些反量的依从范围,并从中属于这些iNversion Algoriths的统计数据。扩散率和放松率。评估张量值扩散和T2加权的硅化和体内数据集相关的数据集,我们证明了其同时捕获不确定性的亚素素纤维方向和锥锥的能力,并测量了纤维特异性扩散属性,具有已知的与现有的ANATSOMY和现有的文献。直接翻译成其他扩散 - 延迟相关实验,探测$ T_1 $和$ T_2^*$,MC-DPC在跟踪特定特定的患者控制组差异和纵向显微结构变化方面显示了潜力,从而实现了微观结构信息的新工具,以实现微观结构式牵引力术语和映射的tractific myelination Myelination Myelination Myelination-Myelination-Myelination。
Characterizing the properties and orientations of sub-voxel fiber populations, although essential to study white-matter architecture, microstructure and connectivity, remains one of the main challenges faced by the MRI microstructure community. While some progress has been made in overcoming this challenge using models, signal representations and tractography algorithms, these approaches are ultimately limited by their key assumptions or by the lack of specificity of the diffusion signal alone. In order to alleviate these limitations, we combine diffusion-relaxation MR acquisitions incorporating tensor-valued diffusion encoding, Monte-Carlo signal inversions that extract non-parametric intra-voxel distributions of diffusion tensors and relaxation rates, and density-based clustering techniques. This new approach, called "Monte-Carlo density-peak clustering" (MC-DPC), first delineates clusters in the diffusion-orientation subspace of the fiber-like diffusion-relaxation components output by Monte-Carlo signal inversions and then draws from the statistical aspect of these inversion algorithms to compute the median and interquartile range of orientation-resolved means of diffusivities and relaxation rates. Evaluating MC-DPC on tensor-valued diffusion-encoded and T2-weighted correlated datasets in silico and in vivo, we demonstrate its ability to simultaneously capture sub-voxel fiber orientations and cones of uncertainty, and measure fiber-specific diffusion-relaxation properties that are consistent with the known anatomy and existing literature. Straightforwardly translatable to other diffusion-relaxation correlation experiments probing $T_1$ and $T_2^*$, MC-DPC shows potential in tracking bundle-specific patient-control group differences and longitudinal microstructural changes, enabling new tools for microstructure-informed tractography, and mapping tract-specific myelination states.