论文标题

具有热力和机械边界链的流体动力极限

Hydrodynamic limit for a chain with thermal and mechanical boundary forces

论文作者

Komorowski, Tomasz, Olla, Stefano, Simon, Marielle

论文摘要

我们证明了具有动量标志的随机翻转的一维谐波链的流体动力极限。该系统是开放的,并在边界处受到两个恒温器​​的约束,并在其中一个端点之一处受到外部张力。在时空的扩散缩放下,我们证明了两个本地保守数量的经验曲线,即体积拉伸和能量,将保守部分微分方程的非线性扩散系统收敛到解决方案。

We prove the hydrodynamic limit for a one dimensional harmonic chain with a random flip of the momentum sign. The system is open and subject to two thermostats at the boundaries and to an external tension at one of the endpoints. Under a diffusive scaling of space-time, we prove that the empirical profiles of the two locally conserved quantities, the volume stretch and the energy, converge to the solution of a non-linear diffusive system of conservative partial differential equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源