论文标题
具有热力和机械边界链的流体动力极限
Hydrodynamic limit for a chain with thermal and mechanical boundary forces
论文作者
论文摘要
我们证明了具有动量标志的随机翻转的一维谐波链的流体动力极限。该系统是开放的,并在边界处受到两个恒温器的约束,并在其中一个端点之一处受到外部张力。在时空的扩散缩放下,我们证明了两个本地保守数量的经验曲线,即体积拉伸和能量,将保守部分微分方程的非线性扩散系统收敛到解决方案。
We prove the hydrodynamic limit for a one dimensional harmonic chain with a random flip of the momentum sign. The system is open and subject to two thermostats at the boundaries and to an external tension at one of the endpoints. Under a diffusive scaling of space-time, we prove that the empirical profiles of the two locally conserved quantities, the volume stretch and the energy, converge to the solution of a non-linear diffusive system of conservative partial differential equations.