论文标题
JL-DCF:RGB-D显着对象检测的联合学习和密集合件的融合框架
JL-DCF: Joint Learning and Densely-Cooperative Fusion Framework for RGB-D Salient Object Detection
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
This paper proposes a novel joint learning and densely-cooperative fusion (JL-DCF) architecture for RGB-D salient object detection. Existing models usually treat RGB and depth as independent information and design separate networks for feature extraction from each. Such schemes can easily be constrained by a limited amount of training data or over-reliance on an elaborately-designed training process. In contrast, our JL-DCF learns from both RGB and depth inputs through a Siamese network. To this end, we propose two effective components: joint learning (JL), and densely-cooperative fusion (DCF). The JL module provides robust saliency feature learning, while the latter is introduced for complementary feature discovery. Comprehensive experiments on four popular metrics show that the designed framework yields a robust RGB-D saliency detector with good generalization. As a result, JL-DCF significantly advances the top-1 D3Net model by an average of ~1.9% (S-measure) across six challenging datasets, showing that the proposed framework offers a potential solution for real-world applications and could provide more insight into the cross-modality complementarity task. The code will be available at https://github.com/kerenfu/JLDCF/.