论文标题

与决策相关信息发现的强大优化

Robust Optimization with Decision-Dependent Information Discovery

论文作者

Vayanos, Phebe, Georghiou, Angelos, Yu, Han

论文摘要

强大的优化是建模和解决受不确定性影响的两阶段决策问题的流行范式。在许多现实世界中,信息发现的时间都是决定性的,并且不确定的参数只有在经常经常昂贵的投资之后才能观察到。然而,大多数文献都假定可以自由观察到不确定的参数,并且它们被揭示的顺序独立于决策者的行为。填补这个空白。我们考虑两阶段和多阶段的强大优化问题,决策变量的哪一部分控制信息发现时间。因此,可以通过在以前的阶段进行战略性探索性投资来发现信息(至少部分)。我们提出了一种新型的动态表述,并证明了它的正确性。我们利用我们的模型提供了一种从K适应性近似启发的解决方案方法。如果没有(某些)决策变量是实现的,则我们将问题重新将问题重新制定为有限的混合成员(分别双线性)程序。该有限程序可通过现成的求解器解决。我们将分段线性凸功能最小化的方法推广。我们在潘多拉盒问题的合成实例,偏好启发问题,最佳盒子问题和R&D项目组合优化问题方面证明了我们方法的有效性。最后,我们将其评估为主动偏好引起问题,用于向联合组织共享网络的政策制定者推荐肾脏分配政策。

Robust optimization is a popular paradigm for modeling and solving two- and multi-stage decision-making problems affected by uncertainty. In many real-world applications, the time of information discovery is decision-dependent and the uncertain parameters only become observable after an often costly investment. Yet, most of the literature assumes that uncertain parameters can be observed for free and that the sequence in which they are revealed is independent of the decision-maker's actions. To fill this gap. we consider two- and multi-stage robust optimization problems in which part of the decision variables control the time of information discovery. Thus, information can be discovered (at least in part) by making strategic exploratory investments in previous stages. We propose a novel dynamic formulation of the problem and prove its correctness. We leverage our model to provide a solution method inspired from the K-adaptability approximation. We reformulate the problem as a finite mixed-integer (resp. bilinear) program if none (resp. some of the) decision variables are real-valued. This finite program is solvable with off-the-shelf solvers. We generalize our approach to the minimization of piecewise linear convex functions. We demonstrate the effectiveness of our method in terms of interpretability, optimality, and speed on synthetic instances of the Pandora box problem, the preference elicitation problem, the best box problem, and the R&D project portfolio optimization problem. Finally, we evaluate it on an instance of the active preference elicitation problem used to recommend kidney allocation policies to policy-makers at the United Network for Organ Sharing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源