论文标题

投影加权草图:证明策略和构造

Projection-Cost-Preserving Sketches: Proof Strategies and Constructions

论文作者

Musco, Cameron, Musco, Christopher

论文摘要

在本说明中,我们说明了[FSS13,CEM+15]中介绍的常见矩阵近似方法(例如随机投影和随机抽样)如何产生投影成本的草图。投影成本的草图是矩阵近似值,对于给定参数$ k $,大约保留了目标矩阵与所有$ k $维二维子空间的距离。此类草图将用于线性代数,数据科学和机器学习的可扩展算法应用。我们的目标是简化[CEM+15]和[CMM17]中引入的证明技术的介绍,以便它们可以作为未来工作的指南。我们还将读者推荐给[CYD19],该[CYD19]对第2节中涵盖的证明进行了类似的简化说明。

In this note we illustrate how common matrix approximation methods, such as random projection and random sampling, yield projection-cost-preserving sketches, as introduced in [FSS13, CEM+15]. A projection-cost-preserving sketch is a matrix approximation which, for a given parameter $k$, approximately preserves the distance of the target matrix to all $k$-dimensional subspaces. Such sketches have applications to scalable algorithms for linear algebra, data science, and machine learning. Our goal is to simplify the presentation of proof techniques introduced in [CEM+15] and [CMM17] so that they can serve as a guide for future work. We also refer the reader to [CYD19], which gives a similar simplified exposition of the proof covered in Section 2.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源