论文标题

使用多光谱和SAR时间序列的小麦和菜籽作物的包裹级检测

Outlier detection at the parcel-level in wheat and rapeseed crops using multispectral and SAR time series

论文作者

Mouret, Florian, Albughdadi, Mohanad, Duthoit, Sylvie, Kouamé, Denis, Rieu, Guillaume, Tourneret, Jean-Yves

论文摘要

本文根据无监督的离群检测技术研究了包裹级别的异常作物发育的检测。实验验证是对位于法国(法国)的Rapeseed和小麦包裹进行的。提出的方法包括四个顺序步骤:1)使用Sentinel-1和Sentinel-1和Sentinel-2卫星获取的合成孔径雷达(SAR)和多光谱图像的预处理,2)sar和多光谱像素级的提取,3)使用Zonal statistics使用Zonal statisticals和4)Outlier dectect。分析和描述可能影响研究农作物的不同类型的异常。研究可能影响异常检测结果的不同因素,并特别注意Sentinel-1和Sentinel-2数据之间的协同作用。总体而言,当使用隔离森林算法共同选择Sentinel-1和Sentinel-2特征时,获得了最佳性能。选定的特征是Sentinel-1的VV和VH反向散射系数和Sentinel-2的5个植被指数(我们中间,归一化差异植被指数和两个归一化差异水的变体)。当使用这些特征的比率为10%时,检测到的真实阳性(即作物异常)的百分比为94.1%,小麦包裹的百分比为94.1%。

This paper studies the detection of anomalous crop development at the parcel-level based on an unsupervised outlier detection technique. The experimental validation is conducted on rapeseed and wheat parcels located in Beauce (France). The proposed methodology consists of four sequential steps: 1) preprocessing of synthetic aperture radar (SAR) and multispectral images acquired using Sentinel-1 and Sentinel-2 satellites, 2) extraction of SAR and multispectral pixel-level features, 3) computation of parcel-level features using zonal statistics and 4) outlier detection. The different types of anomalies that can affect the studied crops are analyzed and described. The different factors that can influence the outlier detection results are investigated with a particular attention devoted to the synergy between Sentinel-1 and Sentinel-2 data. Overall, the best performance is obtained when using jointly a selection of Sentinel-1 and Sentinel-2 features with the isolation forest algorithm. The selected features are VV and VH backscattering coefficients for Sentinel-1 and 5 Vegetation Indexes for Sentinel-2 (among us, the Normalized Difference Vegetation Index and two variants of the Normalized Difference Water). When using these features with an outlier ratio of 10%, the percentage of detected true positives (i.e., crop anomalies) is equal to 94.1% for rapeseed parcels and 95.5% for wheat parcels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源