论文标题

使用分层学习和神经架构搜索进行头颈癌的风险分割的器官

Organ at Risk Segmentation for Head and Neck Cancer using Stratified Learning and Neural Architecture Search

论文作者

Guo, Dazhou, Jin, Dakai, Zhu, Zhuotun, Ho, Tsung-Ying, Harrison, Adam P., Chao, Chun-Hung, Xiao, Jing, Yuille, Alan, Lin, Chien-Yu, Lu, Le

论文摘要

OAR分割是头颈部(H&N)癌症放疗的关键一步,在此范围内,放射线肿瘤学家和过度劳动力成本的不一致会激发自动化方法。但是,使用标准的完全卷积网络工作流的领先方法在桨数变大时会受到挑战,例如> 40。对于这种情况,可以从手动临床OAR描述中的分层方法中获得见解。这是我们工作的目标,我们在其中引入了处于风险分割(Soars)的分层器官(这种方法),这种方法将桨分层为锚定,中层和小型和硬(S&H)类别。飙升在两个维度上分层。第一个维度是每个OAR类别都使用不同的处理管道。特别是,受临床实践的启发,锚桨用于指导中级和S&H类别。第二维度是使用不同的网络体系结构来管理不同桨之间的显着对比度,大小和解剖学变化。我们使用可区分的神经体系结构搜索(NAS),使网络可以在2D,3D或伪3D卷积中进行选择。迄今为止,最全面的OAR数据集对142例H&N癌症患者进行了42例H&N癌症患者的4倍交叉验证,这表明,管道和NAS分层都可以显着提高最先进的ART(从69.52%到73.68%)的定量性能。因此,SOAR提供了一种强大而有原则的手段来管理桨的高度复杂的分割空间。

OAR segmentation is a critical step in radiotherapy of head and neck (H&N) cancer, where inconsistencies across radiation oncologists and prohibitive labor costs motivate automated approaches. However, leading methods using standard fully convolutional network workflows that are challenged when the number of OARs becomes large, e.g. > 40. For such scenarios, insights can be gained from the stratification approaches seen in manual clinical OAR delineation. This is the goal of our work, where we introduce stratified organ at risk segmentation (SOARS), an approach that stratifies OARs into anchor, mid-level, and small & hard (S&H) categories. SOARS stratifies across two dimensions. The first dimension is that distinct processing pipelines are used for each OAR category. In particular, inspired by clinical practices, anchor OARs are used to guide the mid-level and S&H categories. The second dimension is that distinct network architectures are used to manage the significant contrast, size, and anatomy variations between different OARs. We use differentiable neural architecture search (NAS), allowing the network to choose among 2D, 3D or Pseudo-3D convolutions. Extensive 4-fold cross-validation on 142 H&N cancer patients with 42 manually labeled OARs, the most comprehensive OAR dataset to date, demonstrates that both pipeline- and NAS-stratification significantly improves quantitative performance over the state-of-the-art (from 69.52% to 73.68% in absolute Dice scores). Thus, SOARS provides a powerful and principled means to manage the highly complex segmentation space of OARs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源