论文标题

pysindy:用于从数据稀疏识别非线性动力学的Python软件包

PySINDy: A Python package for the Sparse Identification of Nonlinear Dynamics from Data

论文作者

de Silva, Brian M., Champion, Kathleen, Quade, Markus, Loiseau, Jean-Christophe, Kutz, J. Nathan, Brunton, Steven L.

论文摘要

Pysindy是一个用于从数据中发现控制动态系统模型的Python软件包。特别是,Pysindy提供了用于应用非线性动力学稀疏识别(Sindy)(Brunton等人2016)方法的工具。在这项工作中,我们简要说明了信德(Sindy)的数学基础,概述和演示了Pysindy中实现的功能(具有代码示例),用户的实用建议以及Pysindy的潜在扩展名单。软件可从https://github.com/dynamicslab/pysindy获得。

PySINDy is a Python package for the discovery of governing dynamical systems models from data. In particular, PySINDy provides tools for applying the sparse identification of nonlinear dynamics (SINDy) (Brunton et al. 2016) approach to model discovery. In this work we provide a brief description of the mathematical underpinnings of SINDy, an overview and demonstration of the features implemented in PySINDy (with code examples), practical advice for users, and a list of potential extensions to PySINDy. Software is available at https://github.com/dynamicslab/pysindy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源