论文标题

瑞典北部的大规模建模和对救护车呼叫的预测,使用时空logussian Cox流程

Large-scale modelling and forecasting of ambulance calls in northern Sweden using spatio-temporal log-Gaussian Cox processes

论文作者

Bayisa, Fekadu L., Ådahl, Markus, Rydén, Patrik, Cronie, Ottmar

论文摘要

尽管救护车呼叫数据通常以时空点模式的形式出现,但文献中介绍的基于点过程的建模方法很少。在本文中,我们研究了一组独特的瑞典时空救护车呼叫数据,该数据包括呼叫的空间(GPS)位置(瑞典最北端的四个地区)以及呼叫发生的相关日(2014年1月1日至2014年12月31日,2014年1月1日)。在数据的性质中,我们在这里采用log-gaussian Cox过程(LGCP)进行时空建模和呼叫的预测。为此,我们提出了一种基于K-均值聚类的带宽选择方法,用于对可分离时空强度函数的空间成分的内核估计。强度函数的时间分量使用泊松回归,使用不同的日历协变量对LGCP的随机强度的时空随机场分量进行建模,并使用大都市调整后的langevin算法拟合。在研究区域的东南部发现了空间热点,该地区的大多数人都活着,我们拟合的模型/预测设法很好地捕捉了这一行为。此外,预期的电话数量与每周的年度和年度季节之间存在显着关联。非参数二阶分析表明LGCP似乎是数据的合理模型。最后,我们发现拟合的预测生成了模拟的未来空间事件模式,非常类似于实际数据。

Although ambulance call data typically come in the form of spatio-temporal point patterns, point process-based modelling approaches presented in the literature are scarce. In this paper, we study a unique set of Swedish spatio-temporal ambulance call data, which consist of the spatial (GPS) locations of the calls (within the four northernmost regions of Sweden) and the associated days of occurrence of the calls (January 1, 2014, to December 31, 2018). Motivated by the nature of the data, we here employ log-Gaussian Cox processes (LGCPs) for the spatio-temporal modelling and forecasting of the calls. To this end, we propose a K-means clustering based bandwidth selection method for the kernel estimation of the spatial component of the separable spatio-temporal intensity function. The temporal component of the intensity function is modelled using Poisson regression, using different calendar covariates, and the spatio-temporal random field component of the random intensity of the LGCP is fitted using the Metropolis-adjusted Langevin algorithm. Spatial hot-spots have been found in the south-eastern part of the study region, where most people in the region live and our fitted model/forecasts manage to capture this behavior quite well. Also, there is a significant association between the expected number of calls and the day-of-the-week and the season-of-the-year. A non-parametric second-order analysis indicates that LGCPs seem to be reasonable models for the data. Finally, we find that the fitted forecasts generate simulated future spatial event patterns that quite well resemble the actual future data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源