论文标题

随机过程的模块化混乱

Modular chaos for random processes

论文作者

Akhmet, Marat

论文摘要

在本文中,考虑了符号动力学的基本概括。我们应用了抽象自相似集的概念和混乱引入的相似性图,该轨道在无限的许多模块之间扩展了轨道。动力学不含维度,度量和拓扑假设。它将所有三种类型的Poincare,Li-Yorke和Devaney混乱都团结在一起,可以无限制。该研究表明,庞加雷混乱的动态是分析离散和连续时间随机过程的非凡用途。示例说明结果。

In the present paper, an essential generalization of the symbolic dynamics is considered. We apply the notions of abstract self-similar sets and the similarity map for a chaos introduction, which orbits are expanded among infinitely many modules. The dynamics is free of dimensional, metrical and topological assumptions. It unites all the three types of Poincare, Li-Yorke and Devaney chaos in a single model, which can be unbounded. The research demonstrates that the dynamics of Poincare chaos is of exceptional use to analyze discrete and continuous-time random processes. Examples, illustrating the results are provided.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源