论文标题
使用合奏Kalman倒置学习随机关闭
Learning Stochastic Closures Using Ensemble Kalman Inversion
论文作者
论文摘要
尽管许多系统的管理方程式(从第一原理中得出)可能被视为已知,但数字模拟它们描述的所有相互作用通常太昂贵了。因此,研究人员经常寻求更简单的描述,这些描述描述了复杂现象,而无需数字解决所有相互作用的组件。在这种情况下,随机微分方程(SDE)自然作为模型出现。通过实验和模拟,数据采集的增长为许多学科中SDE模型的系统推导提供了机会。但是,当将标准统计方法应用于参数估计时,SDE和实际数据之间的不一致通常会引起问题。 SDE与实际数据之间的不相容性可以通过根据这些时间序列数据和基于SDE的学习参数得出足够的统计信息来解决。遵循这种方法,我们将SDE与来自真实数据的足够统计的拟合作为反问题,并证明可以通过使用Ensemble Kalman倒置(EKI)来解决此反问题。此外,我们使用高斯过程回归,通过引入未知功能的层次结构,可改进的参数化来创建一个用于漂移和扩散项的非参数学习的框架。我们证明了SDE模型拟合的建议方法,首先是在具有嘈杂的Lorenz '63模型的模拟研究中,然后在其他应用中,包括降低大气科学中的确定性混乱系统的尺寸,在气候动力学中大规模的模型以及用于吸收性的无数型动力学动态的大型模型模型。结果证实,所提出的方法为将SDE模型拟合到真实数据提供了强大而系统的方法。
Although the governing equations of many systems, when derived from first principles, may be viewed as known, it is often too expensive to numerically simulate all the interactions they describe. Therefore researchers often seek simpler descriptions that describe complex phenomena without numerically resolving all the interacting components. Stochastic differential equations (SDEs) arise naturally as models in this context. The growth in data acquisition, both through experiment and through simulations, provides an opportunity for the systematic derivation of SDE models in many disciplines. However, inconsistencies between SDEs and real data at short time scales often cause problems, when standard statistical methodology is applied to parameter estimation. The incompatibility between SDEs and real data can be addressed by deriving sufficient statistics from the time-series data and learning parameters of SDEs based on these. Following this approach, we formulate the fitting of SDEs to sufficient statistics from real data as an inverse problem and demonstrate that this inverse problem can be solved by using ensemble Kalman inversion (EKI). Furthermore, we create a framework for non-parametric learning of drift and diffusion terms by introducing hierarchical, refinable parameterizations of unknown functions, using Gaussian process regression. We demonstrate the proposed methodology for the fitting of SDE models, first in a simulation study with a noisy Lorenz '63 model, and then in other applications, including dimension reduction in deterministic chaotic systems arising in the atmospheric sciences, large-scale pattern modeling in climate dynamics, and simplified models for key observables arising in molecular dynamics. The results confirm that the proposed methodology provides a robust and systematic approach to fitting SDE models to real data.