论文标题

你是什​​么意思?平均功能在贝叶斯优化中的作用

What do you Mean? The Role of the Mean Function in Bayesian Optimisation

论文作者

De Ath, George, Fieldsend, Jonathan E., Everson, Richard M.

论文摘要

贝叶斯优化是一种优化昂贵的黑盒功能的流行方法。通过最大限度地衡量剥削和探索的采集功能,选择要评估的下一个位置。高斯过程,即贝叶斯优化中选择的替代模型,通常以恒定的先验平均函数等于观察到的函数值的算术平均值。我们表明,收敛速率可以敏感地取决于平均函数的选择。我们使用10个综合测试问题和两个现实世界中的问题,以及使用预期的改善和上限边界恢复功能。我们发现,对于设计尺寸,使用恒定平均函数等于观察到的质量值始终是所考虑的合成问题的最佳选择。我们认为,这种最糟糕的质量功能促进了剥削,从而导致更快的收敛性。但是,对于实际任务,尽管没有明显的最佳选择,但能够对健身景观进行建模的更复杂的平均功能可能是有效的。

Bayesian optimisation is a popular approach for optimising expensive black-box functions. The next location to be evaluated is selected via maximising an acquisition function that balances exploitation and exploration. Gaussian processes, the surrogate models of choice in Bayesian optimisation, are often used with a constant prior mean function equal to the arithmetic mean of the observed function values. We show that the rate of convergence can depend sensitively on the choice of mean function. We empirically investigate 8 mean functions (constant functions equal to the arithmetic mean, minimum, median and maximum of the observed function evaluations, linear, quadratic polynomials, random forests and RBF networks), using 10 synthetic test problems and two real-world problems, and using the Expected Improvement and Upper Confidence Bound acquisition functions. We find that for design dimensions $\ge5$ using a constant mean function equal to the worst observed quality value is consistently the best choice on the synthetic problems considered. We argue that this worst-observed-quality function promotes exploitation leading to more rapid convergence. However, for the real-world tasks the more complex mean functions capable of modelling the fitness landscape may be effective, although there is no clearly optimum choice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源