论文标题
时空域张量神经网络:人类姿势分类的应用
Space-Time Domain Tensor Neural Networks: An Application on Human Pose Classification
论文作者
论文摘要
传感技术的最新进展要求设计和开发能够有效处理时空数据的模式识别模型。在这项研究中,我们建议使用三维骨骼数据提出一个基于空间和时间意识的基于张量的神经网络,以进行人体姿势分类。我们的模型采用三个新型组件。首先,一个能够构建高歧视性时空特征的输入层。其次,张量融合操作可产生数据的紧凑而丰富的表示形式,第三,基于张量的神经网络,以其原始张量形式处理数据表示。我们的模型是端到端训练的,其特征是少数可训练的参数,使其适用于带注释的数据有限的问题。对拟议模型的实验评估表明它可以实现最新的性能。
Recent advances in sensing technologies require the design and development of pattern recognition models capable of processing spatiotemporal data efficiently. In this study, we propose a spatially and temporally aware tensor-based neural network for human pose classification using three-dimensional skeleton data. Our model employs three novel components. First, an input layer capable of constructing highly discriminative spatiotemporal features. Second, a tensor fusion operation that produces compact yet rich representations of the data, and third, a tensor-based neural network that processes data representations in their original tensor form. Our model is end-to-end trainable and characterized by a small number of trainable parameters making it suitable for problems where the annotated data is limited. Experimental evaluation of the proposed model indicates that it can achieve state-of-the-art performance.