论文标题

具有条件生成对抗网络的宇宙学质量图的仿真

Emulation of cosmological mass maps with conditional generative adversarial networks

论文作者

Perraudin, Nathanaël, Marcon, Sandro, Lucchi, Aurelien, Kacprzak, Tomasz

论文摘要

弱重力镜头质量图在理解宇宙结构的演变以及我们约束宇宙学模型的能力方面起着至关重要的作用。这些质量图的预测基于昂贵的N体模拟,该模拟可以创建用于宇宙学分析的计算瓶颈。现代的深层生成模型,例如生成对抗网络(GAN),已经证明了他们实现这一目标的潜力。大多数现有的GAN方法会为宇宙学参数的固定价值产生模拟,从而限制了它们的实际适用性。我们提出了一个新颖的条件GAN模型,该模型能够为任何一对物质密度$ω_m$和物质聚类强度$σ_8$生成质量图,这些参数对宇宙结构的演变产生了最大的影响。我们的结果表明,我们的条件gan可以在模拟宇宙学的空间内有效地插入,并以良好的视觉质量高统计精度在此空间内生成地图。我们使用一系列指标对N体和GAN生成的图进行了广泛的定量比较:像素直方图,峰值计数,峰值计数,功率谱,双光谱,Biseptra,Minkowski功能,幂谱的相关矩阵,幂谱,多尺度结构相似性指数(ms-ssim)和我们的等效范围(我们的fif)(fif)(fifechet offiréchet)。我们发现在这些指标上有一个很好的一致性,典型的差异在模拟网格的中心<5%,而在网格边缘处的宇宙学稍差。在<20%的水平上,双光谱的协议稍差一些。这项贡献是直接构建质量图的模拟器的一步,既捕获宇宙信号及其可变性。我们公开提供代码和数据:https://renkulab.io/gitlab/nathanael.perraudin/darkmattergan

Weak gravitational lensing mass maps play a crucial role in understanding the evolution of structures in the universe and our ability to constrain cosmological models. The prediction of these mass maps is based on expensive N-body simulations, which can create a computational bottleneck for cosmological analyses. Modern deep generative models, such as Generative Adversarial Networks (GAN), have demonstrated their potential to achieve this goal. Most existing GAN approaches produce simulations for a fixed value of the cosmological parameters, which limits their practical applicability. We propose a novel conditional GAN model that is able to generate mass maps for any pair of matter density $Ω_m$ and matter clustering strength $σ_8$, parameters which have the largest impact on the evolution of structures in the universe. Our results show that our conditional GAN can interpolate efficiently within the space of simulated cosmologies, and generate maps anywhere inside this space with good visual quality high statistical accuracy. We perform an extensive quantitative comparison of the N-body and GAN -generated maps using a range of metrics: the pixel histograms, peak counts, power spectra, bispectra, Minkowski functionals, correlation matrices of the power spectra, the Multi-Scale Structural Similarity Index (MS-SSIM) and our equivalent of the Fréchet Inception Distance (FID). We find a very good agreement on these metrics, with typical differences are <5% at the centre of the simulation grid, and slightly worse for cosmologies at the grid edges. The agreement for the bispectrum is slightly worse, on the <20% level. This contribution is a step towards building emulators of mass maps directly, capturing both the cosmological signal and its variability. We make the code and the data publicly available: https://renkulab.io/gitlab/nathanael.perraudin/darkmattergan

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源