论文标题

快速颜色分割

Fast Soft Color Segmentation

论文作者

Akimoto, Naofumi, Zhu, Huachun, Jin, Yanghua, Aoki, Yoshimitsu

论文摘要

我们解决了软色分割的问题,该问题定义为将给定图像分解为几个RGBA层,每个图像仅包含均匀的颜色区域。分解的结果层为受益于基于层的编辑而受益的应用铺平了道路,例如图像和视频的重新彩色和合成。由于其迭代性质的缓慢处理时间阻碍了此问题的当前最新方法,因此无法扩展到某些现实世界中的情况。为了解决此问题,我们为此任务提出了一种基于神经网络的方法,该方法将给定图像分解为单个正向通行证中的多层。此外,我们的方法分别分解了颜色层和α通道层。通过利用一个新颖的培训目标,我们的方法可以在层次中正确分配颜色。结果,我们的方法实现了有希望的质量,而没有现有的迭代方法推理速度问题。我们的彻底实验分析表明,我们的方法产生的定性和定量结果可与以前的方法相当,同时提高了300,000倍的速度。最后,我们在多个应用程序上利用了建议的方法,并证明了其速度优势,尤其是在视频编辑中。

We address the problem of soft color segmentation, defined as decomposing a given image into several RGBA layers, each containing only homogeneous color regions. The resulting layers from decomposition pave the way for applications that benefit from layer-based editing, such as recoloring and compositing of images and videos. The current state-of-the-art approach for this problem is hindered by slow processing time due to its iterative nature, and consequently does not scale to certain real-world scenarios. To address this issue, we propose a neural network based method for this task that decomposes a given image into multiple layers in a single forward pass. Furthermore, our method separately decomposes the color layers and the alpha channel layers. By leveraging a novel training objective, our method achieves proper assignment of colors amongst layers. As a consequence, our method achieve promising quality without existing issue of inference speed for iterative approaches. Our thorough experimental analysis shows that our method produces qualitative and quantitative results comparable to previous methods while achieving a 300,000x speed improvement. Finally, we utilize our proposed method on several applications, and demonstrate its speed advantage, especially in video editing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源