论文标题

FERH/PMN-PT中磁化的可逆和磁性无助的电压驱动的切换

Reversible and magnetically unassisted voltage-driven switching of magnetization in FeRh/PMN-PT

论文作者

Fina, Ignasi, Quintana, Alberto, Martí, Xavier, Sánchez, Florencio, Foerster, Michael, Aballe, Lucia, Sort, Jordi, Fontcuberta, Josep

论文摘要

在没有子公司磁场或电流辅助的情况下,电场对磁化的可逆控制可以帮助减少自旋设备的功耗。当升高温度以上时,Ferh将显示出与单位细胞体积膨胀相关的铁磁相变到铁磁相变的罕见的抗铁磁磁性。因此,使用相邻的压电层施加的应变,可以通过应用于压电材料的电场来调整抗铁磁和铁磁区域的相对量。实际上,在应对在合适的压电底物上生长的Ferh膜时,已经观察到饱和磁化的巨大变化。鉴于其应用,最相关的是,雷神磁化而不是饱和磁化的变化是最相关的。在这里,我们表明,在没有任何偏置外部磁场的情况下,可以通过电场诱导的永久性和可逆磁化变化,而在此之后仍将其诱导。散装和局部磁性表征表明,在避孕时观察到的大磁反应的基本原因是铁磁性纳米园的膨胀(而不是成核)。

Reversible control of magnetization by electric fields without assistance from a subsidiary magnetic field or electric current could help reduce the power consumption in spintronic devices. When increasing temperature above room temperature, FeRh displays an uncommon antiferromagnetic to ferromagnetic phase transition linked to a unit cell volume expansion. Thus, using the strain exerted by an adjacent piezoelectric layer, the relative amount of antiferromagnetic and ferromagnetic regions can be tuned by an electric field applied to the piezoelectric material. Indeed, large variations in the saturation magnetization have been observed when straining FeRh films grown on suitable piezoelectric substrates. In view of its applications, the variations in the remanent magnetization rather than those of the saturation magnetization are the most relevant. Here, we show that in the absence of any bias external magnetic field, permanent and reversible magnetization changes as high as 34% can be induced by an electric field, which remain after this has been zeroed. Bulk and local magnetoelectric characterization reveals that the fundamental reason for the large magnetoelectric response observed at remanence is the expansion (rather than the nucleation) of ferromagnetic nanoregions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源