论文标题

知识引导的深入强化学习用于互动推荐

Knowledge-guided Deep Reinforcement Learning for Interactive Recommendation

论文作者

Chen, Xiaocong, Huang, Chaoran, Yao, Lina, Wang, Xianzhi, Liu, Wei, Zhang, Wenjie

论文摘要

交互式建议旨在从项目和用户之间的动态互动中学习,以实现响应能力和准确性。强化学习对于应对动态环境而言本质上是有利的,因此在交互式推荐研究中引起了人们的关注。受知识吸引的建议的启发,我们提出了知识指导的深入强化学习(KGRL),以利用增强学习和知识图的优势来进行交互式建议。该模型是在Actor-Critic网络框架上实现的。它维持当地知识网络来指导决策,并采用注意机制来捕获项目之间的长期语义。我们已经在模拟的在线环境中进行了全面的实验,该实验具有六个公共现实世界数据集,并证明了我们的模型优于几种最先进的方法。

Interactive recommendation aims to learn from dynamic interactions between items and users to achieve responsiveness and accuracy. Reinforcement learning is inherently advantageous for coping with dynamic environments and thus has attracted increasing attention in interactive recommendation research. Inspired by knowledge-aware recommendation, we proposed Knowledge-Guided deep Reinforcement learning (KGRL) to harness the advantages of both reinforcement learning and knowledge graphs for interactive recommendation. This model is implemented upon the actor-critic network framework. It maintains a local knowledge network to guide decision-making and employs the attention mechanism to capture long-term semantics between items. We have conducted comprehensive experiments in a simulated online environment with six public real-world datasets and demonstrated the superiority of our model over several state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源