论文标题
PAU调查:使用模拟转移学习的光度红移
The PAU Survey: Photometric redshifts using transfer learning from simulations
论文作者
论文摘要
在本文中,我们介绍了\ textsc {deepz}深度学习光度红移(photo- $ z $)代码。作为测试案例,我们将代码应用于Cosmos字段中的PAU调查(PAU)数据。与现有算法相比,\ textsc {deepz}将$σ_{68} $散布统计量减少了50 \%\%_ at $ i _ {\ rm ab} = 22.5 $。通过各种方法来实现这种改进,包括从模拟中转移学习,其中训练集由模拟和观察结果组成,从而减少了训练数据的需求。红移概率分布是用混合密度网络(MDN)估计的,该混合物密度网络(MDN)产生准确的红移分布。我们的代码包括一个自动编码器,以减少Galaxy SED的噪声并提取功能。它也可以从组合多个网络中受益,该网络将照片降低了10%。此外,使用随机构造的辅助通量训练增加了有关单个暴露的信息,从而减少了光度异常值的影响。除了用狭窄的频带打开较高的红移精度的路线外,这些机器学习技术还对于广泛的调查也很有价值。
In this paper we introduce the \textsc{Deepz} deep learning photometric redshift (photo-$z$) code. As a test case, we apply the code to the PAU survey (PAUS) data in the COSMOS field. \textsc{Deepz} reduces the $σ_{68}$ scatter statistic by 50\% at $i_{\rm AB}=22.5$ compared to existing algorithms. This improvement is achieved through various methods, including transfer learning from simulations where the training set consists of simulations as well as observations, which reduces the need for training data. The redshift probability distribution is estimated with a mixture density network (MDN), which produces accurate redshift distributions. Our code includes an autoencoder to reduce noise and extract features from the galaxy SEDs. It also benefits from combining multiple networks, which lowers the photo-$z$ scatter by 10 percent. Furthermore, training with randomly constructed coadded fluxes adds information about individual exposures, reducing the impact of photometric outliers. In addition to opening up the route for higher redshift precision with narrow bands, these machine learning techniques can also be valuable for broad-band surveys.