论文标题

使用GON-R卫星观测值开发和解释基于神经网络的合成雷达反射率估算器

Development and Interpretation of a Neural Network-Based Synthetic Radar Reflectivity Estimator Using GOES-R Satellite Observations

论文作者

Hilburn, Kyle A., Ebert-Uphoff, Imme, Miller, Steven D.

论文摘要

这项研究的目的是开发用于吸收降水场景中的gos-r系列观测的技术,以改善对对流量的短期尺度预测高影响天气危害。尽管一种方法是辐射同化,但在沉淀的场景中,其高级基线成像仪(ABI)的rod-r辐射的信息含量饱和,而辐射同化也不利用来自Goes Lightning Mapper(GLM)的闪电观测。在这里,开发了一个卷积神经网络(CNN),以将Ros-R radians和Lightning转化为合成雷达反射率场,以利用现有的雷达同化技术。我们发现,与传统的基于像像素的方法相比,CNN使用空间环境的能力对于此应用程序至关重要,并且可以提高技能。为了了解改进的性能,我们使用一种结合多种技术的新颖分析方法,每种方法都为网络推理提供了不同的见解。通道预扣实验和空间信息预扣实验用于表明CNN从辐射梯度中的信息含量和闪电的存在中获得高反射率值的技能。归因方法(层次相关性的传播)表明,CNN是协同使用的辐射和闪电信息,其中闪电可帮助CNN专注于最重要的相邻位置。合成输入用于量化对辐射梯度的敏感性,表明较尖锐的梯度在预测的反射率中产生更强的响应。最后,发现地静止的闪电观测值对于它们指出强雷达雷达的位置的能力具有独特的价值。

The objective of this research is to develop techniques for assimilating GOES-R Series observations in precipitating scenes for the purpose of improving short-term convective-scale forecasts of high impact weather hazards. Whereas one approach is radiance assimilation, the information content of GOES-R radiances from its Advanced Baseline Imager (ABI) saturates in precipitating scenes, and radiance assimilation does not make use of lightning observations from the GOES Lightning Mapper (GLM). Here, a convolutional neural network (CNN) is developed to transform GOES-R radiances and lightning into synthetic radar reflectivity fields to make use of existing radar assimilation techniques. We find that the ability of CNNs to utilize spatial context is essential for this application and offers breakthrough improvement in skill compared to traditional pixel-by-pixel based approaches. To understand the improved performance, we use a novel analysis methodology that combines several techniques, each providing different insights into the network's reasoning. Channel withholding experiments and spatial information withholding experiments are used to show that the CNN achieves skill at high reflectivity values from the information content in radiance gradients and the presence of lightning. The attribution method, layer-wise relevance propagation, demonstrates that the CNN uses radiance and lightning information synergistically, where lightning helps the CNN focus on which neighboring locations are most important. Synthetic inputs are used to quantify the sensitivity to radiance gradients, showing that sharper gradients produce a stronger response in predicted reflectivity. Finally, geostationary lightning observations are found to be uniquely valuable for their ability to pinpoint locations of strong radar echoes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源