论文标题

在自适应活动驱动网络上流行病的活动和非活动隔离

Active and inactive quarantine in epidemic spreading on adaptive activity-driven networks

论文作者

Mancastroppa, Marco, Burioni, Raffaella, Colizza, Vittoria, Vezzani, Alessandro

论文摘要

我们考虑了自适应活动驱动的时间网络的流行过程,其自适应行为模型为因感染而引起的活动和吸引力的变化。通过使用平均场方法,我们得出了对一般自适应策略的SIS和SIR流行模型流行阈值的分析估计,该策略在很大程度上取决于易感性和感染状态的活动与吸引力之间的相关性。我们专注于强烈的社会疏远,实施两种受到最新实际案例研究启发的隔离:一种主动的隔离区,其中人口补偿了连接的链接丧失,使无效的连接与非频繁的节点的无效联系,以及与隔离节点的链接相关的链接,并未重新连接。两种策略都具有相同的流行阈值,但在活动阶段的动力学方面它们有很大差异。我们表明,与非活动阶段相比,活动隔离区在降低活动阶段的影响方面的有效性极低,而在SIR模型中,措施的较晚采用需要无效的隔离才能达到遏制。

We consider an epidemic process on adaptive activity-driven temporal networks, with adaptive behaviour modelled as a change in activity and attractiveness due to infection. By using a mean-field approach, we derive an analytical estimate of the epidemic threshold for SIS and SIR epidemic models for a general adaptive strategy, which strongly depends on the correlations between activity and attractiveness in the susceptible and infected states. We focus on strong social distancing, implementing two types of quarantine inspired by recent real case studies: an active quarantine, in which the population compensates the loss of links rewiring the ineffective connections towards non-quarantining nodes, and an inactive quarantine, in which the links with quarantined nodes are not rewired. Both strategies feature the same epidemic threshold but they strongly differ in the dynamics of active phase. We show that the active quarantine is extremely less effective in reducing the impact of the epidemic in the active phase compared to the inactive one, and that in SIR model a late adoption of measures requires inactive quarantine to reach containment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源