论文标题

聚合物网络的统计机械本构理论:分布,行为和集合之间的不可息联系

Statistical mechanical constitutive theory of polymer networks: The inextricable links between distribution, behavior, and ensemble

论文作者

Buche, Michael R., Silberstein, Meredith N.

论文摘要

提出了一种基本理论,用于经历大变形的聚合物网络的机械响应,该响应将统计机械原理与宏观热力学本质理论无缝整合。我们的表述允许考虑任意聚合物链行为时,当链之间的相互作用可能被忽略时。这种仔细的治疗表明,单链机械行为与网络中链的平衡分布之间的天然对应关系,以及不同单链热力学团体之间的对应关系。我们通过可扩展的自由接头链模型证明了这些重要区别。然后将这种统计机械理论扩展到连续量表,在那里我们利用传统的宏观本构理论最终从变形和聚合物网络统计范围内检索了Cauchy应力。再次使用可扩展的接头链模型,我们通过对网络的压力拉伸响应的影响来说明自然发生的统计对应关系的重要性。我们还表明,当链中的链接数量足够大时,这些差异就消失了,并讨论为什么在达到此限制之前,某些方法的性能要比其他方法更好。

A fundamental theory is presented for the mechanical response of polymer networks undergoing large deformation which seamlessly integrates statistical mechanical principles with macroscopic thermodynamic constitutive theory. Our formulation permits the consideration of arbitrary polymer chain behaviors when interactions among chains may be neglected. This careful treatment highlights the naturally occurring correspondence between single-chain mechanical behavior and the equilibrium distribution of chains in the network, as well as the correspondences between different single-chain thermodynamic ensembles. We demonstrate these important distinctions with the extensible freely jointed chain model. This statistical mechanical theory is then extended to the continuum scale, where we utilize traditional macroscopic constitutive theory to ultimately retrieve the Cauchy stress in terms of the deformation and polymer network statistics. Once again using the extensible freely jointed chain model, we illustrate the importance of the naturally occurring statistical correspondences through their effects on the stress-stretch response of the network. We additionally show that these differences vanish when the number of links in the chain becomes sufficiently large enough, and discuss why certain methods perform better than others before this limit is reached.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源