论文标题
非统一边界对纠缠熵的影响
Effects of Non-Conformal Boundary on Entanglement Entropy
论文作者
论文摘要
带有规范的诺伊曼或迪里奇条件的时空边界可保留保形的不变性,但是“混合”边界条件在它们之间线性互插的“混合”边界条件可以打破共形的对称性,并产生有趣的重新归一化组,即使理论是自由的,也可以提供可溶性模型,即具有非平凡的规模依赖性。我们计算(Rindler)的(Rindler)纠缠熵的自由标量场,并在半Minkowski空间和反DE保姆空间中进行混合边界条件。在后一种情况下,我们还计算了额外的几何贡献,根据最近的一项建议,该提议统称为共形场理论双重纠缠熵的1/N校正。在两种情况下,我们都会获得一些扰动确切的结果,这些结果说明了紫外线和红外固定点之间的单调插值。这与对重新归一化组的不可逆性的最新工作一致,从而可以评估上述全息纠缠熵的提议,并说明了边界形成域理论的G理论的概括。
Spacetime boundaries with canonical Neuman or Dirichlet conditions preserve conformal invarience, but "mixed" boundary conditions which interpolate linearly between them can break conformal symmetry and generate interesting Renormalization Group flows even when a theory is free, providing soluble models with nontrivial scale dependence. We compute the (Rindler) entanglement entropy for a free scalar field with mixed boundary conditions in half Minkowski space and in Anti-de Sitter space. In the latter case we also compute an additional geometric contribution, which according to a recent proposal then collectively give the 1/N corrections to the entanglement entropy of the conformal field theory dual. We obtain some perturbatively exact results in both cases which illustrate monotonic interpolation between ultraviolet and infrared fixed points. This is consistent with recent work on the irreversibility of renormalization group, allowing some assessment of the aforementioned proposal for holographic entanglement entropy and illustrating the generalization of the g-theorem for boundary conformal field theory.