论文标题
与SO(3)对称性的非本地一维系统中的连续Néel-vbs量子相变
Continuous Néel-VBS Quantum Phase Transition in Non-Local one-dimensional systems with SO(3) Symmetry
论文作者
论文摘要
可以通过各种发达的分析方法研究一维$(1D)$与当地汉密尔顿人的交互系统。最近在具有空间非本地相互作用的系统中发现了新颖的$ 1D $物理学,或者在$ 2D $量子关键点的$ 1D $边界上发现,并且批量的关键波动也在边界上产生有效的非局部相互作用。这项工作研究了$ 2D $的$ 1D $边界的边缘状态,强烈相互作用的对称性受保护的拓扑(SPT)状态,当时散装被驱动到疾病阶的相变。我们将以$ 2D $ affleck-kennedy-lieb-tasaki(aklt)状态为例,这是一个受SO(3)旋转对称性和空间翻译保护的SPT状态。我们发现,由于与大量量子临界波动的边界头像耦合,AKLT状态的原始$(1+1)d $边界共形场理论是不稳定的。当整体固定在量子临界点(在我们的膨胀方法的精度上)时,我们发现,通过在边界处调整一个参数,在远距离抗磁性Néel订单与价键固体(VBS)顺序之间存在一般直接过渡。该过渡与最近在具有非局部空间相互作用的自旋1/2链的数值模拟中发现的Néel-VBS过渡非常相似。还将讨论我们的分析研究与最新的数值结果之间有关$ 2D $ AKLT状态的边缘状态下的数值结果之间的联系。
One dimensional $(1d)$ interacting systems with local Hamiltonians can be studied with various well-developed analytical methods. Recently novel $1d$ physics was found numerically in systems with either spatially nonlocal interactions, or at the $1d$ boundary of $2d$ quantum critical points, and the critical fluctuation in the bulk also yields effective nonlocal interactions at the boundary. This work studies the edge states at the $1d$ boundary of $2d$ strongly interacting symmetry protected topological (SPT) states, when the bulk is driven to a disorder-order phase transition. We will take the $2d$ Affleck-Kennedy-Lieb-Tasaki (AKLT) state as an example, which is a SPT state protected by the SO(3) spin symmetry and spatial translation. We found that the original $(1+1)d$ boundary conformal field theory of the AKLT state is unstable due to coupling to the boundary avatar of the bulk quantum critical fluctuations. When the bulk is fixed at the quantum critical point, within the accuracy of our expansion method, we find that by tuning one parameter at the boundary, there is a generic direct transition between the long range antiferromagnetic Néel order and the valence bond solid (VBS) order. This transition is very similar to the Néel-VBS transition recently found in numerical simulation of a spin-1/2 chain with nonlocal spatial interactions. Connections between our analytical studies and recent numerical results concerning the edge states of the $2d$ AKLT-like state at a bulk quantum phase transition will also be discussed.