论文标题
恢复二次骨骼哈密顿官二元的恢复数量保护
Restoring number conservation in quadratic bosonic Hamiltonians with dualities
论文作者
论文摘要
二次玻色剂哈密顿人中的数字持续术语可以引起不良的动力不稳定性。通过利用这些哈密顿人内置的伪 - 温米结构,我们表明,只要动态稳定性成立,人们就可以始终构建一个非平凡的双重(单位等效)持有数量的二次辅助二次玻色波斯型汉密尔顿大麻。我们为这一结构体现了一个宽大的谐波链和与基塔耶夫的Majoragan链的纤维素类似物。我们的二元性可用于识别局部数字连接模型,该模型在无需参数放大的情况下近似稳定的骨气汉密尔顿人,并实施非差异数量连接的波斯尼克系统中的非热$ \ Mathcal {p} \ Mathcal {t} $ - 对称性动态。解决了计算拓扑不变的含义。
Number-non-conserving terms in quadratic bosonic Hamiltonians can induce unwanted dynamical instabilities. By exploiting the pseudo-Hermitian structure built in to these Hamiltonians, we show that as long as dynamical stability holds, one may always construct a non-trivial dual (unitarily equivalent) number-conserving quadratic bosonic Hamiltonian. We exemplify this construction for a gapped harmonic chain and a bosonic analogue to Kitaev's Majorana chain. Our duality may be used to identify local number-conserving models that approximate stable bosonic Hamiltonians without the need for parametric amplification and to implement non-Hermitian $\mathcal{P}\mathcal{T}$-symmetric dynamics in non-dissipative number-conserving bosonic systems. Implications for computing topological invariants are addressed.