论文标题

在医学中深度学习模型及其潜在解决方案中的概括性问题:用锥形束计算机断层扫描(CBCT)进行计算机断层扫描(CT)图像转换

Generalizability issues with deep learning models in medicine and their potential solutions: illustrated with Cone-Beam Computed Tomography (CBCT) to Computed Tomography (CT) image conversion

论文作者

Liang, Xiao, Nguyen, Dan, Jiang, Steve

论文摘要

当应用在一个数据集上训练的深度学习模型(DL)模型时,可推广性是一个问题。培训一个通用模型,任何时候,随时随地都可以使用任何人,都是不现实的。在这项工作中,我们证明了通用性问题,然后通过使用锥形梁计算机断层扫描(CBCT)将基于转移学习(TL)探索潜在的解决方案,以作为测试台将计算机层析成像(CT)图像转换任务作为计算机图像转换任务。以前的工作已将CBCT转换为类似CT的图像。但是,所有这些作品仅研究了一个或两个解剖站点,并使用了来自同一供应商扫描仪的图像。在这里,我们调查了一种模型如何在其他机器和其他站点上为一台机器和一个解剖站点工作。我们培训了从一个供应商的头颈癌患者扫描仪获取的CBCT图像的模型,并将其应用于其他供应商的扫描仪和其他疾病部位的图像。我们发现,在将训练有素的DL模型应用于另一个供应商的扫描仪的数据集时,通用性可能是一个重要的问题。然后,我们探索了基于TL的三个实用解决方案,以解决此概括问题:目标模型,该模型是从头开始对目标域进行训练的;合并的模型,从头开始训练在源和目标域数据集上;和改编的模型,将经过训练的源模型微调为目标域。我们发现,当目标域中有足够的数据时,这三个模型都可以实现良好的性能。当目标数据集受到限制时,改编的模型最有效,这表明使用微调策略将受过训练的模型调整到看不见的目标域数据集中是一种可行,简便的方法,可以在诊所实现DL模型。

Generalizability is a concern when applying a deep learning (DL) model trained on one dataset to other datasets. Training a universal model that works anywhere, anytime, for anybody is unrealistic. In this work, we demonstrate the generalizability problem, then explore potential solutions based on transfer learning (TL) by using the cone-beam computed tomography (CBCT) to computed tomography (CT) image conversion task as the testbed. Previous works have converted CBCT to CT-like images. However, all of those works studied only one or two anatomical sites and used images from the same vendor's scanners. Here, we investigated how a model trained for one machine and one anatomical site works on other machines and other sites. We trained a model on CBCT images acquired from one vendor's scanners for head and neck cancer patients and applied it to images from another vendor's scanners and for other disease sites. We found that generalizability could be a significant problem for this particular application when applying a trained DL model to datasets from another vendor's scanners. We then explored three practical solutions based on TL to solve this generalization problem: the target model, which is trained on a target domain from scratch; the combined model, which is trained on both source and target domain datasets from scratch; and the adapted model, which fine-tunes the trained source model to a target domain. We found that when there are sufficient data in the target domain, all three models can achieve good performance. When the target dataset is limited, the adapted model works the best, which indicates that using the fine-tuning strategy to adapt the trained model to an unseen target domain dataset is a viable and easy way to implement DL models in the clinic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源