论文标题
基于机器学习的方法仅用于输出结构模态识别
Machine-learning-based methods for output only structural modal identification
论文作者
论文摘要
在这项研究中,我们提出了一种基于机器学习的方法,以确定仅输出数据的结构健康监测(SHM)的模态参数,以充分利用模态响应独立性和机器学习原理的特征。通过利用每种模式的独立性功能,我们使用无监督学习的原则,使深度神经网络的训练过程成为模态分离的过程。自我编码的深神经网络旨在从结构的振动数据中识别结构模态参数。混合信号(即结构响应数据)用作神经网络的输入。然后,我们使用复杂的损失函数来限制神经网络的训练过程,使第三层的输出成为我们想要的模态响应,而最后两层的权重为模式形状。深度神经网络本质上是一个非线性目标函数优化问题。提出了一种新的损失函数来限制独立特征,并考虑不相关和非高斯性,以限制设计的神经网络以获得结构模态参数。提出了简单结构的数字示例和来自电缆固定桥的实际SHM数据的示例,以说明所提出方法的模态参数识别能力。结果表明该方法在盲目从系统响应中盲目提取模态信息方面具有良好的能力。
In this study, we propose a machine-learning-based approach to identify the modal parameters of the output-only data for structural health monitoring (SHM) that makes full use of the characteristic of independence of modal responses and the principle of machine learning. By taking advantage of the independence feature of each mode, we use the principle of unsupervised learning, making the training process of the deep neural network becomes the process of modal separation. A self-coding deep neural network is designed to identify the structural modal parameters from the vibration data of structures. The mixture signals, that is, the structural response data, are used as the input of the neural network. Then we use a complex loss function to restrict the training process of the neural network, making the output of the third layer the modal responses we want, and the weights of the last two layers are mode shapes. The deep neural network is essentially a nonlinear objective function optimization problem. A novel loss function is proposed to constrain the independent feature with consideration of uncorrelation and non-Gaussianity to restrict the designed neural network to obtain the structural modal parameters. A numerical example of a simple structure and an example of actual SHM data from a cable-stayed bridge are presented to illustrate the modal parameter identification ability of the proposed approach. The results show the approach's good capability in blindly extracting modal information from system responses.