论文标题

卷积操作员的奇异性能

Ergodic properties of convolution operators

论文作者

Galindo, Jorge, Jordá, Enrique

论文摘要

令$ g $为本地紧凑型组,$μ$是$ g $的措施。在本文中,我们找到了卷积运算符的条件$λ_p(μ)$,在$ l^p(g)$上定义,并由卷积为$μ$给出,这是含义的ergodic且均匀的含义。运算符的恒星性质$λ_p(μ)$也与该度量$μ$的千古特性有关。

Let $G$ be a locally compact group and $μ$ be a measure on $G$. In this paper we find conditions for the convolution operators $λ_p(μ)$, defined on $L^p(G)$ and given by convolution by $μ$, to be mean ergodic and uniformly mean ergodic. The ergodic properties of the operators $λ_p(μ)$ are related to the ergodic properties of the measure $μ$ as well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源