论文标题

模块化形式的塞雷重量和Breuil-Mézard的猜想

Serre weights and the Breuil-Mézard conjecture for modular forms

论文作者

Wiersema, Hanneke

论文摘要

Serre的强烈猜想,如今是Khare和Wintenberger的定理,指出,每二维连续,奇怪,不可减少的mod $ p $ p $ galois代表$ρ$来自特定最小重量$ k(ρ)$的模块化形式,级别$ n(ρ)$ n(ρ)$ n(ρ)$ n(ρ)$(ρ)$ $(ρ)。在这篇简短的论文中,我们表明,最小的重量$ k(ρ)$等于受Buzzard,Diamond和Jarvis引入的重量配方启发的最小重量概念。此外,使用Breuil-Mézard的猜想,我们表明,这两个权重配方均等于最小的$ k \ geq 2 $,因此$ρ$具有霍奇 - 泰特型型$(0,k-1)$的结晶升降。

Serre's strong conjecture, now a theorem of Khare and Wintenberger, states that every two-dimensional continuous, odd, irreducible mod $p$ Galois representation $ρ$ arises from a modular form of a specific minimal weight $k(ρ)$, level $N(ρ)$ and character $ε(ρ)$. In this short paper we show that the minimal weight $k(ρ)$ is equal to a notion of minimal weight inspired by the recipe for weights introduced by Buzzard, Diamond and Jarvis. Moreover, using the Breuil-Mézard conjecture we show that both weight recipes are equal to the smallest $k \geq 2$ such that $ρ$ has a crystalline lift of Hodge-Tate type $(0,k-1)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源