论文标题
自动稳定的广义复合结构
Self-crossing stable generalized complex structures
论文作者
论文摘要
我们扩展了(平滑)稳定的广义复合结构的概念,以允许具有正常自我交叉奇异性的抗态截面。这种弱化的不仅允许在较高维度中进行许多自然示例,而且还可以在第四维度中散发出一些光线。我们表明,在四个维度中,这些结构有一个自然连接的总和操作以及平滑操作,该操作将自刺稳定的广义复杂结构变成同一歧管上平滑稳定的广义复合结构。这使我们能够建造稳定的广义复合流形的大型家庭。
We extend the notion of (smooth) stable generalized complex structures to allow for an anticanonical section with normal self-crossing singularities. This weakening not only allows for a number of natural examples in higher dimensions but also sheds some light into the smooth case in dimension four. We show that in four dimensions there is a natural connected sum operation for these structures as well as a smoothing operation which changes a self-crossing stable generalized complex structure into a smooth stable generalized complex structure on the same manifold. This allows us to construct large families of stable generalized complex manifolds.