论文标题

随机赫斯特指数的多曲线移动平均流程的规律性

Regularity of multifractional moving average processes with random Hurst exponent

论文作者

Loboda, Dennis, Mies, Fabian, Steland, Ansgar

论文摘要

研究了一种最近提出的具有随机Hurst指数的多曲线布朗运动(MBM)的替代方案,我们称为ITô-MBM。结果表明,Itô-MBM在本地自相似。与MBM相比,其路径规律性几乎不受功能性Hurst参数的粗糙度的影响。路径性特性是通过类似于Kolmogorov-Chentsov定理的新的多项式矩条件建立的,允许随机的局部Hölder指数。我们的结果适用于一系列的移动平均过程,在该过程中,路径规律性和长期内存属性可能被解耦,例如进行Matérn过程的多曲线概括。

A recently proposed alternative to multifractional Brownian motion (mBm) with random Hurst exponent is studied, which we refer to as Itô-mBm. It is shown that Itô-mBm is locally self-similar. In contrast to mBm, its pathwise regularity is almost unaffected by the roughness of the functional Hurst parameter. The pathwise properties are established via a new polynomial moment condition similar to the Kolmogorov-Chentsov theorem, allowing for random local Hölder exponents. Our results are applicable to a broad class of moving average processes where pathwise regularity and long memory properties may be decoupled, e.g. to a multifractional generalization of the Matérn process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源