论文标题
在$ \ Mathcal {o} $ - 模块上的运算符上谎言代数
On $\mathcal{O}$-operators on modules over Lie algebras
论文作者
论文摘要
$ \ Mathcal {O} $ - 模块上的运算符的概念概括了rota-baxter运算符。他们还在模块存在的情况下将泊松结构概括为谎言代数。从泊松结构的动机中,我们定义了量规变换,并减少了$ \ Mathcal {o} $ - 运算符。接下来,我们考虑兼容$ \ MATHCAL {O} $ - 在Lie代数上的模块上的运算符。我们定义$ \ MATHCAL {on} $ - 结构,这些结构产生兼容$ \ Mathcal {O} $ - 运算符的层次结构。我们表明,与$ \ Mathcal {O} $ - 操作员相关的二元谎言代数上的强毛勒 - 卡丹方程的解决方案产生了$ \ Mathcal {on} $ - 结构,因此,是兼容$ \ Mathcal {o} $ - 运营商的层次结构。最后,我们还介绍了通用的复杂结构和全体形态$ \ Mathcal {o} $ - 模块上的运算符在Lie代数上,并展示它们如何合并$ \ Mathcal {O} $ - 运算符。
The notion of $\mathcal{O}$-operators on modules over Lie algebras generalize Rota-Baxter operators. They also generalize Poisson structures on Lie algebras in the presence of modules. Motivated from Poisson structures, we define gauge transformations and reductions of $\mathcal{O}$-operators. Next we consider compatible $\mathcal{O}$-operators on modules over Lie algebras. We define $\mathcal{ON}$-structures which give rise to hierarchy of compatible $\mathcal{O}$-operators. We show that a solution of the strong Maurer-Cartan equation on a twilled Lie algebra associated to an $\mathcal{O}$-operator gives rise to an $\mathcal{ON}$-structure, hence, a hierarchy of compatible $\mathcal{O}$-operators. Finally, we also introduce generalized complex structures and holomorphic $\mathcal{O}$-operators on modules over Lie algebras and show how they incorporate $\mathcal{O}$-operators.